Oxidative Phosphorylation

Electron pass through a series of membrane-bound carriers

3 types of electron transfers occurs in oxidative phosphorylation:

- 1. direct transfer of electrons, as in the reduction of Fe3+ or Fe2+
- 2. transfer as hydrogen atom (H++e-)
- 3. transfer as hydride ion (:H-), which bears two electrons

In addition to NAD and flavoproteins, three other types of electron-carrying molecules function in the respiratory chain; a hydrophobic quinone (ubiquinone) and two different types of iron-containing proteins (cytochromes and iron-sulfur proteins).

Cytochromes are proteins with characteristic strong absorption of visible light, due to their iron-containing heme prosthetic group

Iron-sulfur proteins

The iron is present not in the heme but in association with inorganic sulfur atoms or with the sulfur atoms of Cys residues in the protein or both.

Rieske iron-sulfur proteins are variation, in which one Fe atom is coordinated to two His residues rather than two Cys residues

Enzyme complex	Mass (kDa)	Number of subunits*	Prosthetic group(s)
I NADH dehydrogenase	850	42 (14)	FMN, Fe-S
II Succinate dehydrogenase	140	5	FAD, Fe-S
III Ubiquinone: cytochrome <i>c</i> oxidoreductase	250	11	Hemes, Fe-S
Cytochrome c^{\dagger}	13	1	Heme
IV Cytochrome oxidase	160	13 (3–4)	Hemes; Cu_A , Cu_B

Protein Components of the Mitochondrial Electron-Transfer Chain

*Numbers of subunits in the bacterial equivalents in parentheses.

 † Cytochrome *c* is not part of an enzyme complex; it moves between Complexes III and IV as a freely soluble protein.

Complex I (NADH-ubiquinone oxidoreductase)

Catalysis electron transfer to ubiquinone from NADH

Complex II (Succinate dehydrogenase) – Succinate to Ubiquinone

Complex III (Cytochrome bc1 complex or ubiquinone-cytochrome c oxidoreductase) – Ubiquinone to cytochrome c

 $QH_2 + 2 \operatorname{Cyt} c_1 (\operatorname{oxidized}) + 2H_N^+ \longrightarrow Q + 2 \operatorname{Cyt} c_1 (\operatorname{reduced}) + 4H_P^+$

ATP Synthase – Chemiosmotic model

ATP Yield from Complete Oxidation of Glucose

Process	Direct product	Final ATP
Glycolysis	2 NADH (cytosolic)	3 or 5*
	2 ATP	2
Pyruvate oxidation (two per glucose)	2 NADH (mitochondrial matrix)	5
Acetyl-CoA oxidation in citric acid cycle (two per glucose)	6 NADH (mitochondrial matrix)	15
	2 FADH ₂	3
	2 ATP or 2 GTP	2
Total yield per glucose		30 or 32

*The number depends on which shuttle system transfers reducing equivalents into mitochondria.

Organisation of photosystems in the thylakoid membrane

The absorption of a photon has caused separation of charge in the reaction center.

Noncyclic Photophosphorylation

