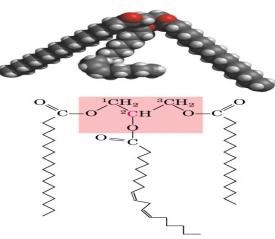
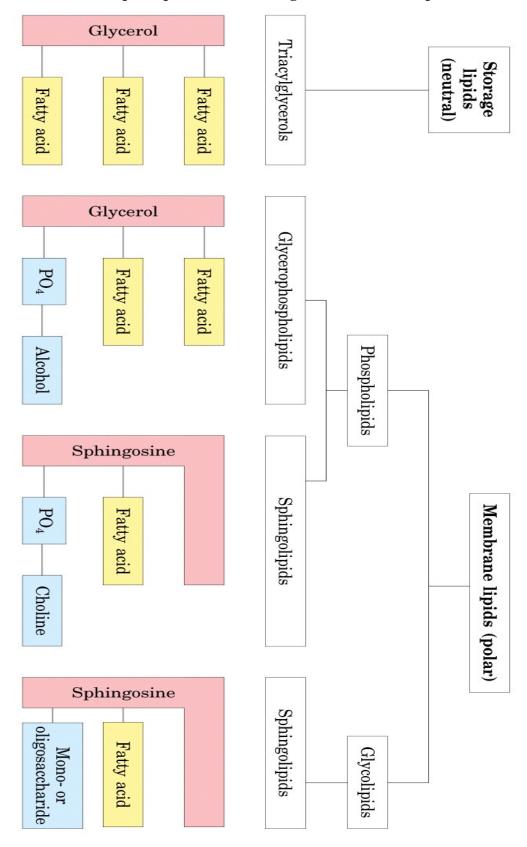

Lipids


Lipids – functional role

- Fats and oils are the principal stored forms or energy in many organisms. Phospholipids and sterols are major structural elements of biological membranes
- Other lipids, although present in relatively small quantities, play critical role of enzymes cofactors, electron carriers, light-absorbing pigments, hydrophobic anchors, emulsifying agents, hormones and intracellular messengers

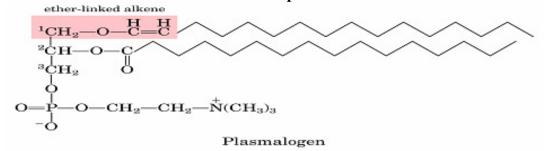
Unsaturated fatty acids have a markedly lower melting point



1-Stearoyl, 2-linoleoyl, 3-palmitoyl glycerol, a mixed triacylglycerol

Fatty acids are carboxylic acids with a hydrocarbon chains ranging from 4 to 36 carbons long (C4 to C36). The simplest lipid constructed from fatty acids are the **triacylglycerols**, also referred to as triglycerides, fats or neutral fats.

The principal classes of storage and membrane lipids



Glycerophospholipids

Glycerophospholipid (general structure)
$${}^{1}CH_{2}-O-C \\ O \\ {}^{2}CH-O-C \\ O \\ {}^{3}CH_{2}-O-P-O-X \\ O \\ Head-group \\ substituent$$
 Saturated fatty acid (e.g., palmitic acid)
$$\\ Unsaturated fatty acid (e.g., oleic acid)$$

Name of glycerophospholipid	Name of X	Formula of X	Net charge (at pH 7)
Phosphatidic acid	_	— н	-1
Phosphatidylethanolamine	Ethanolamine	$-$ CH ₂ $-$ CH ₂ $-\overset{\scriptscriptstyle +}{\mathrm{N}}$ H ₃	0
Phosphatidylcholine	Choline	$- ^{}_{} \mathrm{CH}_2 \!\!-\!\! ^{}_{} \!$	0
Phosphatidylserine	Serine	$-$ CH ₂ $-$ CH $ \stackrel{\dagger}{\mathrm{N}}$ H ₃	-1
Phosphatidylglycerol	Glycerol	- CH ₂ —CH—CH ₂ —OH	-1
Phosphatidylinositol 4,5-bisphosphate	myo-Inositol 4,5- bisphosphate	H O—P OH H OH HO OH HO O—P	-4
Cardiolipin	Phosphatidyl- glycerol	$- CH_{2}$ $CHOH O$ CH_{2} $- CH_{2}$	-2

Ether lipids

ether-linked alkyl

$$^{1}\text{CH}_{2}\text{-O-CH}_{2}\text{-CH}_{2}$$
 $^{2}\text{CH-O-C-CH}_{3}$
 $^{3}\text{CH}_{2}$

O

 $^{3}\text{CH}_{2}$

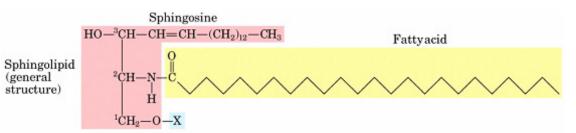
O

 $^{2}\text{CH-O-CH}_{3}$
 $^{3}\text{CH}_{2}$

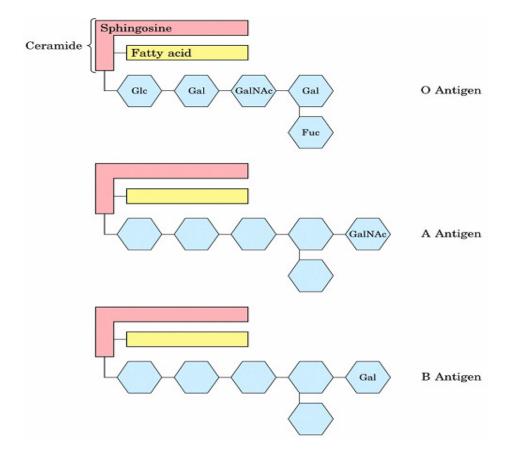
O

 $^{3}\text{CH}_{2}$

O


 $^{3}\text{CH}_{2}$

O


 $^{4}\text{CH}_{3}$
 $^{4}\text{CH}_{3}$
 $^{4}\text{CH}_{3}$

Platelet-activating factor

Sphingolipids

Name of sphingolipid	Name of X	Formula of X
Ceramide	-	— н
Sphingomyelin	Phosphocholine	$-\Pr_{{{{{{}{}{}{$
Neutral glycolipids Glucosylcerebroside	Glucose	H H OH H
Lactosylceramide (a globoside)	Di-, tri-, or tetrasaccharide	Gle
Ganglioside GM2	Complex oligosaccharide	Glc Gal GalNAc

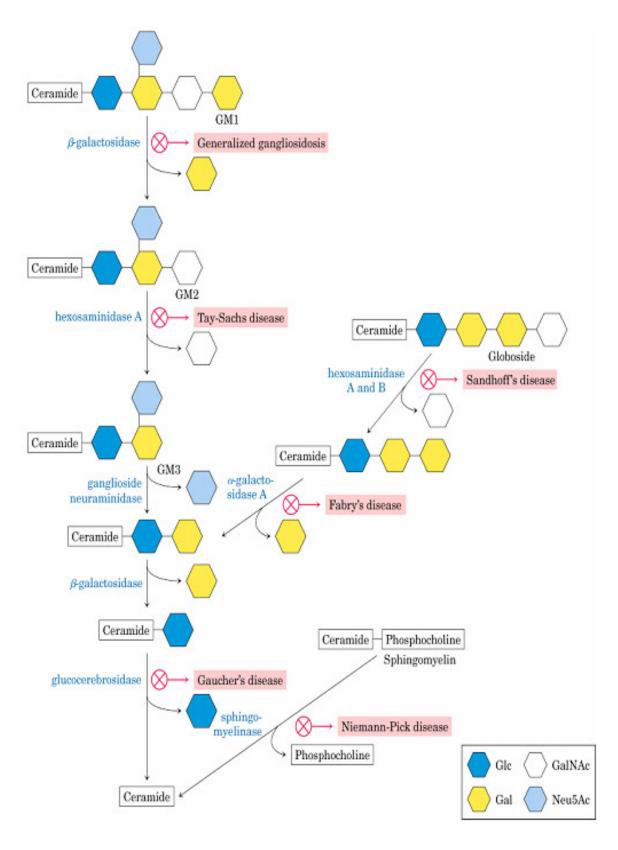
Phospholipase
$$A_1$$

$${}^1CH_2-O-C$$

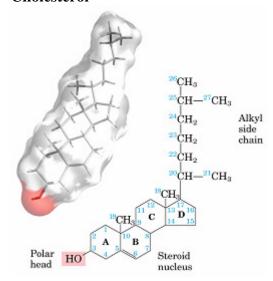
$${}^2CH-O-C$$

$3CH_2$

$2CH_2$


$2CH_2$

$3CH_2$


$2CH_2$

$3CH_2$

$3C$

Cholesterol

Sterols are structural lipids present in the membranes of most eukaryotic cells.

Cholesterol, the major sterol in animal tissues, is amphipathic, with a polar head group and a nonpolar hydrocarbon body

Steroids derived from cholesterol.

Testosterone

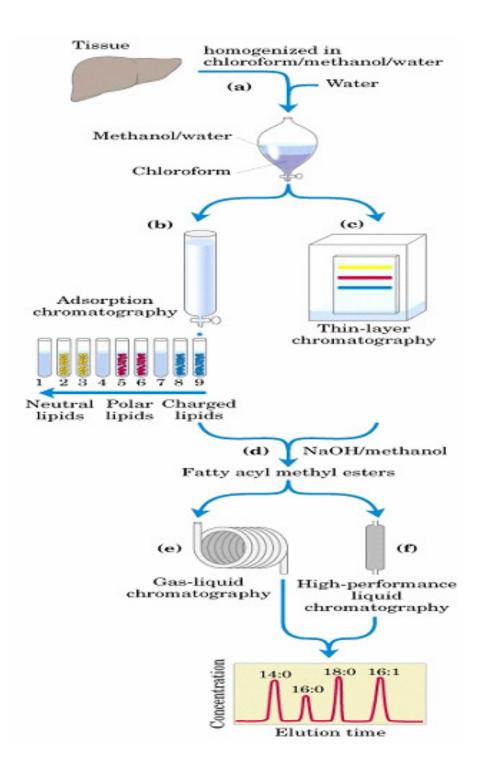
$$H_3C$$
 H_3C
 H_3C

Vitamin D3 – Cholecalciferol, is normally formed in the skin from 7-dehydocholesterol in a photochemical reaction driven by the UV component of sunlight

$$H_3C$$
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_6
 CH_7
 CH_8
 CH_8
 CH_8
 CH_8
 CH_8
 CH_9
 CH_9

1,25-Dihydroxycholecalciferol (1,25-dihydroxyvitamin $D_3)$

Before vitamin D treatment


After 14 months of vitamin D treatment

Vitamin A1 – its precursor and derivatives

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_3} \\$$

$$\begin{array}{c} CH_3 \\ CH_2 \\ CH_2 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_2 \\ CH$$

Tocopherols – contain a substituted aromatic ring and a long isoprenoid side chain. (Lipid Quinones)

