<u>3-D Structure of Proteins</u>

- The spatial arrangement of atoms in a protein is called its conformation.
- Proteins in any of their functional folded conformations are called **native** proteins.
- **Stability** the tendency to maintain a native confirmation.
- When water surrounds a hydrophobic molecule, the optimal arrangement of hydrogen bonds results in a highly structured shell or **solvation layer** of water in the immediate vicinity.

(b)

Ramachandron Plot

Allowed values for the Φ and Ψ are graphically revealed when Ψ is plotted versus Φ in a Ramachandran plot.

3-D Structure of Proteins

- **Primary Structure** basic amino acid sequence
- Secondary Structure refers to the local conformation of some part of the polypeptide [α helix; β conformations]
- Teritiary Structure is the overall 3-D arrangement of all atoms in a protein.
- Quaternary Structure is the 3-D complexes of protein subunits.

Each helical turn includes 3.6 amino acid residues The helical twist of α helix found in all proteins is right-handed.

Knowing the Right Hand from the left.

Not all polypeptides can form a stable α helix. Interactions between amino acid side chains can stabilize or destabilize this structure.

Five different kinds of constraints affect the stability of an α helix:

- **1.** Electrostatic repulsion (or attraction) between successive amino acid residues with charged R group.
- 2. Bulkiness of adjacent R group
- 3. Interactions between amino acid side chains spaced three (or four) residues apart.
- 4. Occurrence of Pre and Gly residues.
- 5. Interaction between amino acid residues at the ends of the helical segment and the electric dipole inherent of the α helix.

<u>**B-conformation of polypeptide chains.</u>**</u>

(b) Parallel

The structures are somewhat similar, although the repeat period is shorter for the parallel conformation (6.5Å versus 7Å for anti-parallel) and the H-bonding patterns are different.

<u>β turns are common in proteins.</u>

Secondary Structures and Properties of Fibrous Proteins

Structure	Characteristics	Examples of occurrence
α Helix, cross-linked by disulfide bonds	Tough, insoluble protective structures of varying hardness and flexibility	$\alpha\mbox{-Keratin}$ of hair, feathers, and nails
β Conformation	Soft, flexible filaments	Silk fibroin
Collagen triple helix	High tensile strength, without stretch	Collagen of tendons, bone matrix

Structure of hair

Two-chain _______

Protofilament { contract framework and a 20-30 Å

(a)

Structure of Collagen

Section of collagen molecule • Like all the α -keratins, collagen has evolved to provide strength.

• Found in connective tissue such as tendons, cartilage, the organic matrix of bone, cornea of the eye.

• It is left-handed and had three amino acid residues per term.

<u>Structure of Silk</u>

Tertiary structure of sperm whale myoglobin

X-ray Diffraction

<u>3-D structure of some small proteins.</u>

	Residues (%)	
Protein (total residues)	α Helix	β Conformation
Chymotrypsin (247)	14	45
Ribonuclease (124)	26	35
Carboxypeptidase (307)	38	17
Cytochrome c (104)	39	0
Lysozyme (129)	40	12
Myoglobin (153)	78	0

Approximate Amounts of α Helix and β Conformation in Some Single-Chain Proteins*

*Portions of the polypeptide chains that are not accounted for by α helix or β conformation consist of bends and irregularly coiled or extended stretches. Segments of α helix and β conformation sometimes deviate slightly from their normal dimensions and geometry.

- **Supersecondary structures**, also called **motifs** or simply **folds**, are particularly stable arrangements of several elements of secondary structure and the connections between them.
- **Class and Fold** are purely structural
- **Family** similar structure and function
- **Superfamily** little primary sequence similarity, but make use of same major structural motif and have functional similarity

(b) Typical connections in an all-β motif

Crossover connection (not observed)

Quaternary Structure

- **Multimer –** multi-subunit protein from 2 to 100 subunits
- **Oligomer** multimer with few subunits
- **Protomer –** multimer with repeating structural unit

Symmetry

Renaturation of unfolded, denatured ribonuclease

Chaperons in protein folding

